If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10w^2-9w-9=0
a = 10; b = -9; c = -9;
Δ = b2-4ac
Δ = -92-4·10·(-9)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-21}{2*10}=\frac{-12}{20} =-3/5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+21}{2*10}=\frac{30}{20} =1+1/2 $
| −(x+5)+2x−4=7 | | 7/12c-1/4=2/3c+1/6 | | 5x-(2x+14)=3x-14 | | 2m-3(77-8m)=15 | | 2*3.14x=100 | | 2*3.14*x=377 | | 377=3.14*2*x | | 1/4x=3+x | | 1x=10-9 | | 3y=2(2+2)y | | 9^5x+1=27^2x-1 | | |6x+8|+6=4 | | 10k2+9k-1=0 | | 10k2+9-1=0 | | P=-0.04x2+240x-10000 | | y-12=80/10 | | 6y+94y=-3 | | (x÷1/5)−0.012=0.113 | | 9k-12=6 | | 6/25x+0.21=0.306 | | 2x+4x+3x=-9 | | 1/3x-3/4=1/2x+1 | | 2(3x-10)=50 | | 50(3x-10)=2x | | 5m868+3m8=28 | | 2x(3x-10)=50 | | 4(1.14)^x+2=7 | | (3x-12)(2x-7)=5 | | √2x+6=√4x+5-1 | | 12w−10w=10 | | m-3/2/4=1/6/2 | | r−804727= 5 |